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Abstract 
 

Direct inference derives values for definite (single-case) probabilities from those of 
related indefinite (general) probabilities. But direct inference is less useful than might 
be supposed, because we often have too much information, with the result that we 
can make conflicting direct inferences, and hence they all undergo collective defeat, 
leaving us without any conclusion to draw about the value of the definite 
probabilities. This paper presents reason for believing that there is a function — the Y-
function — that can be used to combine different indefinite probabilities to yield a 
single value for the definite probability. Thus we get a kind of “computational” direct 
inference.  

1. Fundamentals of Direct Inference 
 This paper announces a new discovery which, I think, will be of fundamental importance in the 
application of probabilities to the real world. It concerns direct inference, so I will begin by 
sketching the theory of direct inference that I developed in my (1990). 
 There are two general approaches to probability theory. The most familiar takes “definite” or 
“single-case” probabilities to be basic. Definite probabilities attach to closed formulas or 
propositions. I write them using all caps: PROB(P) and PROB(P/Q). There are familiar difficulties for 
this approach, the simplest being that of making sense of the definite probabilities themselves. A 
serious practical difficulty is that when taking definite probabilities as basic, one must generally 
assume that we come to a problem equipped with a complete probability distribution. The latter is 
often computationally impossible for problems of realistic complexity. Like Kyburg (1974), I am 
convinced that the only way to construct a useful kind of definite probability is in terms of 
“indefinite” or “general” probabilities. The indefinite probability of an A being a B is not about any 
particular A, but rather about the property of being an A. In this respect, its logical form is the same 
as that of relative frequencies. “prob” is a variable-binding operator, binding the “x” in 
“prob(Bx/Ax)”. I am convinced that the latter is the only approach that can provide the ultimate 
foundations for probability, in the sense of (1) providing a logical analysis of useful concepts of 
probability, and (2) explaining the epistemological foundations of probabilistic reasoning. The latter 
is required to make probabilities useful in science or AI. 
 According to this approach, statistical induction gives us knowledge of indefinite probabilities, 
and then direct inference gives us knowledge of definite probabilities. Reichenbach (1949) 
pioneered the theory of direct inference. The basic idea is that if we want to know the definite 
probability PROB(Fa), we look for the narrowest reference class (or reference property) G such that 
we know the indefinite probability prob(Fx/Gx) and we know Ga, and then we identify PROB(Fa) 
with prob(Fx/Gx). For example, actuarial reasoning aimed at setting insurance rates proceeds in 
this way. Kyburg (1974) was the first to attempt to provide firm logical foundations for direct 
inference, and my (1990) took that as its starting point and constructed a modified theory with a 
more epistemological orientation.2 I will briefly sketch my own approach, and then discuss a 
general problem for theories of direct inference. 
 The appeal to indefinite probabilities and direct inference has seemed promising for avoiding 
the computational difficulties attendant on the need for a complete probability distribution. Instead 
of assuming that we come to a problem with an antecedently given complete distribution, one can 

                                                
1 This work was supported by NSF grant no. IIS-0412791. 
2 Competing theories of direct inference can be found in Levi (1980), Bacchus (1990), Halpern (1990). 
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more realistically assume that we come to the problem with some limited knowledge of indefinite 
probabilities, and then we infer definite probabilities from the latter as we need them. 
Unfortunately, as I will show in section two, it is premature to suppose that existing theories of 
direct inference actually solve this problem. The main point of this paper, however, is to exhibit a 
mathematical result that makes this problem solvable by appealing to a more powerful variety of 
direct inference — what I will call computational direct inference. 
 Kyburg used the term “probability” to refer only to definite probabilities, but I think it is better 
to distinguish between definite and indefinite probabilities. Kyburg identified indefinite 
probabilities with relative frequencies, but I think that is inadequate for a number of reasons 
(detailed in my 1990). The simplest is that we often make probability judgments that diverge from 
relative frequencies. For example, we can talk about a coin being a fair coin (and so the probability 
of a flip landing heads is 0.5) even when it is flipped only once and then destroyed. For 
understanding such indefinite probabilities, we need a notion of probability that talks about possible 
instances of properties as well as actual instances. My proposal in my (1990) was that we can 
identify the nomic probability prob(Fx/Gx) with the proportion of physically possible G’s that are F’s. 
A physically possible G is defined to be an ordered pair 〈w,x〉  such that w is a physically possible 
world (one compatible with all the physical laws) and x has the property G at w. G is the set of all 
physically possible G’s. We must assume the existence or a proportion function ρ(X,Y) for sets X and 
Y. I investigated the general theory of proportion in my (1990), although I no longer regard that 
treatment as entirely adequate, and am working on an improved version of that theory. For the 
moment, let us just assume we have the proportion function ρ. Then if it is physically possible for 
there to be G’s, we define: 

  prob(Fx/Gx) = ρ(F,G). 

In my (1990) I proposed a generalization of this definition that handles the case of counterlegal 
probabilities, in which it is not physically possible for there to be G’s, but I will ignore that 
sophistication here.  
 It will often be convenient to write proportions in the same logical form as probabilities, so 
where ϕ and θ are open formulas with free variable x, !(" /#) = !({x |" &#},{x |#}) . Without going 
into details about the proportion function, I will make two classes of assumptions. Let #X be the 
cardinal of X. If Y is finite, I assume: 
 

  !(X,Y ) =
# X"Y

#Y
. 

 
However, for present purposes the proportion function is most useful in talking about proportions 
among infinite sets. The sets F and G will almost invariably be infinite, if for no other reason than 
that there are infinitely many physically possible worlds in which there are F’s and G’s. I assume 
that the standard “Boolean” principles that hold for finite relative frequencies also hold for 
proportions among infinite sets. In my (1990), I also defended various non-Boolean principles. In 
particular, I assume that principles that hold for finite sets in the limit (as their size goes to !0 ) hold 
for infinite sets. For instance, the following is a theorem of combinatorial mathematics: 

Finite Principle of Agreement: For every ε,δ > 0 there is a N such that if B is finite but #B > N then 

 ! !(A,X)!"
#
!!(A,B) / X $ B( ) %1&'. 

In other words, proportions among subsets of B tend to agree with proportions in B itself, and both 
the strength of the tendency and the extent of the agreement increase as the size of B increases. I 
take this to support a corresponding principle of agreement for infinite sets: 

Strong Principle of Agreement: For every δ > 0, if B is infinite then 

 ! !(A,X)!"!
#
!(A,B) / X $ B( ) =1.  
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In my (1990) I showed that this principle is derivable from the general theory of proportions 
adumbrated there, although as I remarked above, I no longer regard that theory as entirely 
adequate. Nomic probabilities are proportions among physically possible objects, so the Strong 
Principle of Agreement implies:  
 
Principle of Agreement for Probabilities: For every δ > 0,  

 
prob prob(Ax / Bx)!!!

"
prob(Ax /Gx) / B!7!G( ) =1.  

I take the Principle of Agreement for Probabilities to underlie direct inference, as I will now explain. 
 The theory of direct inference is an epistemological theory. It is about how to make certain 
kinds of inferences. In my (1990) I showed that the entire epistemological theory of nomic 
probability can be derived from a single epistemological principle coupled with a mathematical 
theory that amounts to a calculus of nomic probabilities. The latter is richer than the standard 
probability calculus, because nomic probabilities have more structure than definite probabilities. 
The relationship between indefinite probabilities and definite probabilities is roughly analogous to 
the difference between the predicate calculus and the propositional calculus. I won’t pursue the 
details of the calculus here, but see my (1990). The single epistemological principle that underlies 
probabilitistic reasoning is the statistical syllogism. The basic form of the statistical syllogism that I 
will employ here is the modified version defended in my (1995): 
 

(A3) If G is projectible with respect to both K and U and r > 0.5, then  !Kc & prob(Gx/Kx&Ux) 
≥ r !  is a defeasible reason for  ! (Uc → Gc) ! .3 

 
I assume the theory of defeasible reasoning adumbrated in my (1995). 
 When U is tautologous, (A3) implies the simpler:  
 

(A1) If G is projectible with respect to K and r > 0.5, then  !Kc & prob(Gx/Kx) ≥ r !  is a 
defeasible reason for  !Gc ! . 

The simplest kind of defeater is a subproperty defeater: 
 

(D) If H is projectible with respect to both K and U,  !Hc & prob(Gx/Kx&Ux&Hx) ≠ 
prob(Gx/Kx&Ux) & prob(Ux/Kx&Hx) ≥ prob(U/K) !  is an undercutting defeater for (A1) and 
(A3).4 

 
In (A1), U is tautologous, so in that case (D) can be simplified:  
 

(D1) If H is projectible with respect to K,  !Hc & prob(Gx/Kx&Hx) ≠ prob(Gx/Kx) !  is an 
undercutting defeater for (A1). 

 
 More defeaters are required to make inferences in accordance with the statistical syllogism work 
properly. Several are discussed in my my (1990), but for present purposes we need not pursue this.
 The statistical syllogism, coupled with the principle of agreement, gives us a defeasible reason 
for expecting that if prob(Fx/Gx) = r then for every δ > 0, prob(Fx/Gx&Hx) ≈δ r, and the latter 
entails that prob(Fx/Gx&Hx) = r. Thus we get a general principle of direct inference, which I call 
nonclassical direct inference: 
 
Nonclassical Direct Inference: 

If F is projectible with respect to G, 
 
!prob(Fx /Gx) = r"  is a defeasible reason for 

 
!prob(Fx /Gx& Hx) = r" . 

                                                
3 The projectibility constraint is the familiar constraint required for inductive reasoning. This is discussed at length in 
my (1990). Kyburg (1974) also noted the need for some such constraint. 
4 There are two kinds of defeaters. Rebutting defeaters attack the conclusion of an inference, and rebutting defeaters 
attack the inference itself without attacking the conclusion (Pollock 1995). Here I assume some form of the OSCAR 
theory of defeasible reasoning. 
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This is a kind of principle of insufficient reason. It differs from classical direct inference in that it is an 
inference from indefinite probabilities to indefinite probabilities rather than from indefinite 
probabilities to definite probabilities. 
 Defeaters for nonclassical direct inference follow from the defeaters for the statistical syllogism. 
In particular, subproperty defeaters for the statistical syllogism generate subproperty defeaters for 
nonclassical direct inference. Let us define: 
 

F 7 G iff it is physically necessary that (∀x)(Fx → Gx). 
 
F 3 G iff F 7 G but ~(G 7 F). 

Then subproperty defeat for (A1) generates subproperty defeat for nonclassical direct inference: 
 
Subproperty Defeat: 

 !  
G !3!J 3 (G& H )and prob(Fx/Jx) ≠ r !  is an undercutting defeater for nonclassical direct 

inference. 

 Direct inference is normally understood as being a form of inference from indefinite 
probabilities to definite probabilities rather than from indefinite probabilities to other indefinite 
probabilities. However, I showed in my (1990) that these inferences are derivable from nonclassical 
direct inference if we identify definite probabilities with a special class of indefinite probabilities. Let 
K  be the conjunction of the agent’s justified beliefs. Then we define:  

PROB(P/Q) = r iff for some n, there are n-ary properties R and S and terms a1,…,an such that 
(1) it is physically necessary that (P ↔ Ra1…an) and (Q ↔ Sa1…an), and  
(2) prob(Rx1…xn/Sx1…xn& x1 = a1& … & xn = an & K) = r. 

It can be shown (my 1990) that this yields a unique value for PROB(P/Q). This is a kind of “mixed 
physical/epistemic probability”, because it combines background knowledge in the form of K  with 
indefinite probabilities. 
 Given this definition, we can derive the principle of classical direct inference: 

 !prob(Rx1…xn/Tx1…xn) = r, it is physically necessary that (P ↔ Ra1…an) and that (Q ↔ Sa1…an), 
and Sx1…xn  3 Tx1…xn !  is a defeasible reason for  !PROB(P/Q) = r ! . 

Similarly, we get subproperty defeaters: 

 !  
S !3!U3!T and prob(Rx/Ux) ≠ r !  is an undercutting defeater for classical direct inference. 

 All of this is only a brief sketch of the theory of direct inference developed in my (1990), but it 
will suffice for present purposes. In the next section I will discuss a problem for this theory. The 
main part of this paper will be aimed at establishing the existence of a mathematical function that 
provides a solution to the problem and extends the theory of direct inference in a way that, perhaps 
for the first time, makes it truly useful. 

2. A Problem for Direct Inference 
 The preceding provides a foundation for a more or less standard theory of direct inference. 
Perhaps its main novelty is that it is formulated in terms of a background theory of defeasible 
reasoning. However, this and all similar theories suffer from a fundamental difficulty that greatly 
diminishes their practical usefulness. If we have some complex conjunction G1x &…& Gnx of 
properties and we want to know the value of prob(Fx/G1x &…& Gnx), if we know that 
prob(Fx/G1x) = r and we don’t know anything else of relevance, we can infer defeasibly that 
prob(Fx/G1x &…& Gnx) = r. Similarly, if we know that an object a has the properties G1,…,Gn and 
we know that prob(Fx/G1x) = r and we don’t know anything else of relevance, we can infer defeasibly 
that PROB(Fa) = r. The difficulty is that we usually know more. We typically know the value of 
prob(Fx/Gix) for some i ≠ 1. If prob(Fx/Gix) = s ≠ r, we have defeasible reasons for both 
 !prob(Fx/G1x &…&Gnx) = r !  and  !prob(Fx/G1x &…&Gnx) = s ! , and also for both  !PROB(Fa) = 
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r !  and  !PROB(Fa) = s ! , but as these conclusions are incompatible they all undergo collective 
defeat. Thus the standard theory of direct inference leaves us without a conclusion to draw. The 
upshot is that the promise of direct inference to solve the computational problem of dealing with 
definite probabilities without having to have a complete probability distribution was premature. 
Direct inference will rarely give us the probabilities we need. 
 Direct inference would be vastly more useful in real application if there were a function Y(r,s) 
such that, in a case like the above, we could defeasibly expect that prob(Fx/G1x &…& Gnx) = Y(r,s), 
and hence (by nonclassical direct inference) that PROB(Fa) = Y(r,s). I call this computational direct 
inference, because it computes a new value for PROB(Fa) rather than simply taking a value from a 
known indefinite probability. I call the function used in such a computation “the Y-function” 
because its behavior would be as diagrammed in figure 1. The general presumption has been that 
there is no such function, but this paper presents empirical reasons for thinking that the Y-function 
exists. I will present these reasons and then indicate how the existence of the Y-function can give 
rise to a theory of computational direct inference. 
 

prob(Fx/Gx) = r           prob(Fx/Hx) = s 
 
 
 
 
 
 

prob(Fx/Gx&Hx) = Y(r,s) 
 
 

Figure 1. The Y-function 
 

3. Discovering the Y-function 
 It is generally assumed that no such function as the Y-function exists. Certainly, there is no 
function Y(r,s) such that we can conclude deductively that if prob(Fx/Gx) = r and prob(Fx/Hx) = s 
then prob(Fx/Gx&Hx) = Y(r,s). For any r and s that are neither 0 nor 1, prob(Fx/Gx&Hx) can take 
any value between 0 and 1. However, that is equally true for nonclassical direct inference. That is, if 
prob(Fx/Gx) = r we cannot conclude deductively that prob(Fx/Gx&Hx) = r. Nevertheless, that will 
tend to be the case, and we can defeasibly expect it to be the case. Might something similar be true 
of the Y-function? That is, could there be a function Y(r,s) such that we can defeasibly expect 
prob(Fx/Gx&Hx) to be Y(r,s)? 
 I had always sided with the majority in supposing that there is no such function, but it occurred 
to me that perhaps this was premature. I did not (and do not yet) see how to prove the existence of 
the Y-function, but we might investigate its existence empirically. Let me explain. 
 On analogy with the principle of agreement, suppose there were a function Y(r,s) satisfying the 
following principle: 
 
Y-Principle: For every ε,δ > 0 there is a N such that if U is finite and #U > N then 

 ! f3 !"#
!Y ( f1, f2 ) / f2 = !(A,B)& f3 = !(A,C)& f1 = !(A,B$C)& A,B,C %U( ) & 1' (.  

  
Then in accordance with my general assumptions about the proportion function, it could be 
assumed that the following infinite generalization holds: 
 
Strong Y-Principle: For every δ > 0, if U is infinite then 

 ! f3 !"#
!Y ( f1, f2 ) / f2 = !(A,B)& f3 = !(A,C)& f1 = !(A,B$C)& A,B,C %U( ) = 1.  

 
 Nomic probabilities are proportions among physically possible objects. If there are infinitely 
many physically possible G’s (a condition satisfied by pretty much any property you can come up 
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with, because G can be infinite just by there being infinitely many w’s entering into the ordered 
pairs 〈w,x〉), we then have the following:  
 
Y-Principle for Probabilities: For every δ > 0, if U is infinite then (where A, B and C are variables): 
 

 

 

prob

f3 !!"
!Y ( f1, f2 )!!/

f2 = prob(Ax / Bx)& f3 = prob(Ax /Cx)& f1 = prob(Ax / Bx&Cx)& A,B,C !7!G

#

$

%
%
%

&

'

(
(
(
= 1.  

  
The Y-Principle combined with (A1) will yield the following principle of direct inference in the same 
way the Principle of Agreement combined with (A1) yields the standard principle of nonclassical 
direct inference:  
 
Computational Direct Inference: 

If F is projectible with respect to G and H, 
 
!prob(Fx /Gx) = r !&!prob(Fx / Hx) = s"  is a defeasible 

reason for 
 
!prob(Fx /Gx& Hx) = Y (r, s)" . 

 
 Thus to get a principle of computational direct inference, it suffices to have a function Y(r,s) that 
satisfies the Y-principle for finite sets. Is there such a function? Not seeing how to prove that there 
is (or isn’t) such a function, I decided to test this empirically. Given a set U, we could in principle 
survey all triples A,B,C of subsets of U, compute ρ(A,C), ρ(A,C), and ρ(A,B∩C) and see how they 
are related. If the Y-Principle seems to hold for larger and larger U, that gives us an inductive 
reason for thinking that the Y-Principle is true. The trouble is, you can only survey all triples of U 
for very small U. For instance, if #U = 100, the number of triples A,B,C of subsets of U is 2300, which 
is approximately 1090. This is twelve orders of magnitude greater than a recent estimate of the total 
number of elementary particles in the universe (1078). Clearly, we cannot survey all these triples. 
 Although for even rather small U’s, we cannot survey all of the triples of subsets, we can instead 
use Monte Carlo techniques. That is, we can sample the triples randomly and see what we get. Let 
Num(k) be the set of integers {1,…,k}. I wrote a program in LISP that randomly selects triples of 
nonempty subsets of Num(k) for any k we supply, and then computes and compares the values of 
ρ(A,C), ρ(A,C), and ρ(A,B∩C). To my surprise, this produced the plot of a very well-behaved 
function. The plot of 10,000 triples for k = 10,000 is given in figure 2. This plots the average value of 
ρ(A,B∩C) as a function of ρ(A,C) and ρ(A,C). 
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Figure 2. The Y-function, holding z constant 

 
 Although the average values are described by a well-behaved function, which I will designate 
the Y-function, this does not show that the value of ρ(A,B∩C) tends to agree with Y(ρ(A,B), ρ(A,C)). 
All it shows is that the average value conforms to the Y-function. However, this is also a matter we 
can investigate empirically. We can construct our sampling function so that it not only computes the 
average value of ρ(A,B∩C) for each choice of values for ρ(A,B) and ρ(A,C), but it also keeps track of 
how many of the values agree with Y(ρ(A,B), ρ(A,C)) to any specified degree of approximation. The 
results are quite striking. They are diagrammed in figures 3, 4, and 5. Inspection reveals that the 
envelopes containing 95% of the sampled triples get narrow rapidly. 
 



8 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.1
0.1
0.5
0.5
0.9
0.9

Y
(z
,x
)

x

 
   Figure 3. Upper and lower bounds Figure 4. Upper and lower bounds 
   for Y(z,x) (for three values of z) for Y(z,x) (for five values of z) 
   within which 95% of the sampled within which 95% of the sampled 
   triples fall for k = 100. triples fall for k = 1000. 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.1
0.1
0.2
0.2
0.3
0.3
0.4
0.4
0.5
0.5
0.6
0.6
0.7
0.7
0.8
0.9
0.9
0.8

Y
(z
,x
)

x  
Figure 5. Upper and lower bounds for Y(z,x) within which 

95% of the sampled triples fall for k = 10,000. 
 
 These results give strong inductive support for the existence of a Y-function satisfying the Y-
Principle. It remains a mystery what function this is. I have not been able to find any familiar 
function the fits the curve of figure 2. Because this function is generated by statistical processes 
related to normal distributions, it may have no analytic characterization.  

4. Algebraic Properties of the Y-function 
 
 The most important task facing us is to identify the Y-function and prove the Y-Principle. At this 
point, I can do neither. However, it may be useful to investigate the algebraic properties of the Y-
function that can be read off of figure 2. These may ultimately be helpful in identifying the Y-
function. 

 Clearly, from its definition, the Y-function must be associative: 

(1) Y(z,x) = Y(x,z). 

This property is also exhibited by the plot, as illustrated in figure 6. 
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Figure 6. Associativity. 
 

 Principle (2) tells us that the value .5 plays a special role in the Y-function: 

(2)  Y(.5+x,.5-x) = .5. 

Equivalently: 

(3) Y(z,1-z) = .5 

Principles (2) and (3) are illustrated by figure 7.  
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Figure 7. Y(z,1-z) = .5. 
 
 

Principle (4) expresses another respect in which .5 plays a privileged role. 

(4) Y(.5,x) = x 

Principle (5) is diagrammed in figure 8. 
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Figure 8. Y(.5,x) = x. 

 
The curve exhibits symmetry in three directions — around both diagonals and around the 

center point. Symmetry around the center point is expressed by principle (6), which is diagrammed 
in figure 9: 

(5)  Y(z,x) = 1–Y(1–z,1–x) 
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Figure 9. Y(z,x) = 1–Y(1–z,1–x) 

Symmetry around the right-leaning diagonal is expressed by principle (6), which is diagrammed by 
figure 10: 

(6) Y(1–z,Y(z,x)) = x 
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Figure 10. Y(1–z,Y(z,x)) = x 

 
Principles (5) and (6) entail principle (7), which expresses symmetry around the left-leaning 
diagonal: 

(7) Y(z,1–Y(z,x)) = 1–x. 

Proof: Y(z,1–Y(z,x)) = 1–(1–Y(1–(1–z),1–Y(z,x)) = 1–Y(1–z,Y(z,x)) = 1–x. 

Principle (7), and its derivation, is diagrammed in figure 11. 
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Figure 11. Y(z,1–Y(z,x)) = 1–x. 

 
A principle that will prove very important is the following: 

(8) Y(z,Y(x,w)) = Y(w,Y(z,x)) 

Principle (8) is illustrated by figure 12, although it does not reflect any obvious geometric properties 
of the curve.  
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Figure 12. Y(z,Y(x,w)) = Y(w,Y(z,x)). 
 
The reason principle (8) is important is that, together with associativity, it entails the commutativity 
of the Y-function: 

(9) Y(z,Y(x,w)) = Y(Y(z,x),w). 

Note that the Y-Principle also entails (9). So if the Y-Principle is correct, commutativity follows. 
 These algebraic properties describe a very well-behaved function, but it is still not clear what 
function it is. 

5. Computational Direct Inference 
 
 The existence of the Y-function is a fundamental discovery that makes direct inference useful in 
ways it was never previously useful. The Y-principle tells us how to combine different probabilities 
in direct inference and still arrive at a univocal value. The form of the Y-function is diagrammed as 
in figure 13. 
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prob(Fx/Gx) = r           prob(Fx/Hx) = s 
 
 
 
 
 
 

prob(Fx/Gx&Hx) = Y(r,s) 
 
 

Figure 13. The Y-function 
 
Thus, for example, if we know that the probability of Jones’ dying if we shoot him is .6 and the 
probability of his dying if we poison him is .7, we can infer defeasibly (by A1) that the probability of 
his dying if we do both is Y(.6,.7) = .77778. This explains how built-in redundancy can increase the 
probability of a plan achieving its goal. 
 As observed in section three, the Y-Principle combined with (A1) yields the following principle 
of direct inference in the same way the Principle of Agreement combined with (A1) yields the 
standard principle of nonclassical direct inference:  
 
Computational Direct Inference: 

If F is projectible with respect to G and H, 
 
!prob(Fx /Gx) = r !&!prob(Fx / Hx) = s"  is a defeasible 

reason for 
 
!prob(Fx /Gx& Hx) = Y (r, s)" . 

 
 If we know that prob(Fx/Gx) = r and prob(Fx/Hx) = s, we can also use nonclassical direct 
inference to infer defeasibly that prob(Fx/Gx&Hx) = r and prob(Fx/Gx&Hx) = s, and this conflicts 
with the conclusion that prob(Fx/Gx&Hx) = Y(r,s). However, these conflicting conclusions are 
obtained by applying (A1) to weaker reference properties, and so they are defeated by 
subproperty defeat. In general:  
 
Computational Defeat for Classical Direct Inference: 

If F is projectible with respect to H, 
 
!prob(Fx / Hx) = s"  is an undercutting defeater for 

nonclassical direct inference. 
 
 Computational direct inference is subject to subproperty defeat in the same way nonclassical 
direct inference is, and for the same reason: 
 

 !  
G !3!J 3 (G& H )and prob(Fx/Jx) ≠ r !  is an undercutting defeater for computational direct 

inference. 
 

 !  
H !3!J 3 (G& H )and prob(Fx/Jx) ≠ s !  is an undercutting defeater for computational direct 

inference. 
 

 For its use in computing probabilities, it is very important that the Y-function is commutative. If 
we know that prob(Fx/Ax) = .6, prob(Fx/Bx) = .7, and prob(Fx/Cx) = .75, we can combine them in 
any order to infer defeasibly that prob(Fx/Ax&Bx&Cx) = Y(.6,Y(.7,.75)) = Y(Y(.6,.7),.75) = .913043. 
This makes it convenient to extend the Y-function recursively so that it can be applied to an 
arbitrary number of arguments (greater than or equal to 1): 
 
 If n > 2, Y(r1,…,rn) = Y(r1,Y(r2,…,rn)). 
 
Then we can strengthen computational direct inference as follows:  
 
Computational Direct Inference: 

If F is projectible with respect to G1,…,Gn,  !prob(Fx /G1x) = r1 & prob(Fx /G
n
x) = r

n
"  is a defeasible 

reason for 
 
!prob(Fx /G1x& ...&G

n
x) = Y (r1,...,rn )" . 

 
Defeaters are derivable from those for “binary” computational direct inference. 
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5. Conclusions 
 The use of indefinite probabilities and direct inference seems initially to provide a 
computationally feasible alternative to the unrealistic requirement that we come to problems 
equipped with a complete distribution of definite probabilities. However, the initial promise fades 
with the realization that we normally have too much information, with the result that we can make 
conflicting inferences by nonclassical direct inference, and they collectively defeat one another. This 
difficulty is resolved by the discovery of the Y-function and the principle of computational direct 
inference, which allows us to make use of all our information to compute a single probability. As 
yet, we have only inductive reasons for believing that the Y-function exists, and we do not have an 
analytic characterization of it. Hopefully, future research will fill these lacunae. 
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